Using Artificial Intelligence to Aid Vehicle Lightweighting in Crashworthiness with Aluminum

Author:

Kohar Christopher P.,Connolly Daniel S.,Liusko Timofei,Inal Kaan

Abstract

Significant efforts have been made in the automotive industry to reduce vehicle weight in order to improve vehicle fuel economy and reduce greenhouse gas emissions. New innovations in structural lightweight alloys and manufacturing techniques have allowed automakers to replace conventional steel with lighter aluminum structures. However, automakers have an enormous number of material and gauge thickness combinations to consider in the development process of the next generation production vehicle. Furthermore, the design combination of these materials and structures must not compromise the integrity of the vehicle during a vehicle collision. With the proliferation of inexpensive computational resources, automakers can now explore the effect of material selection on the crashworthiness of next-generation vehicles using computer simulations. While information from these simulations can be manually extracted, the vast amount of data lends itself to artificial intelligence (AI) techniques that can extract knowledge faster and provide more useful interpretations that can be convenient for designers and engineers. This work presents a framework for using artificial intelligence to aid the vehicle design cycle in crashworthiness using aluminum. Virtual experiments of a frontal crash condition of a pick-up truck are performed using finite element analysis to generate the data for this method. Different commercially available aluminum alloys and gauge thicknesses are varied in the virtual experiments. An advanced type of recurrent neural network is used to predict the time-series response of the occupant crash-pulse response, which is a key crashworthiness metric that is used for evaluating safety. This work highlights how automotive designs and engineers can leverage this framework to accelerate the development cycle of the next-generation lightweight vehicle.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3