Collision Prediction and Optimal Trajectory Generation for Collision Avoidance Systems in Trackless Mobile Machines

Author:

Declercq Jesse,Botha Theunis,Hamersma Herman A.

Abstract

The continued high number of fatalities associated with Trackless Mobile Machines (TMMs) in South Africa have led to the introduction of Collision Avoidance System (CAS) regulations in the Mine Health and Safety Act in 2015. This has lead to the profusion of technologically-immature CASs from third-party vendors, all of which are centered on automatic stopping and braking systems. These braking systems often result in trivial or ineffective solutions, proving costly to mining operations. The combination of braking and steering control in CASs may substantially increase the solution space and provide far safer and more efficient manoeuvres. A recursive non-linear collision prediction estimator and optimal trajectory generation model was developed to evaluate the potential contribution of the addition of steering to CASs. Three independent optimal trajectory generation models are proposed to compete against one another in an attempt to synthesize the safest, most predictable, and efficient trajectory. A deep reinforcement learning, lattice optimization and Monte Carlo hyper sampling path planning model’s trajectories are evlauated using the Earth Moving Equipment Safety Round Table (EMESRT) interaction scenarios. Initial results indicate increased CAS solution spaces in collision-avoiding scenarios, providing safer and more effective solutions in high velocity vehicle interactions.

Publisher

EDP Sciences

Subject

General Medicine

Reference26 articles.

1. Green M., Senders J., Visual Expert (2004)

2. Moore P., Mine collision management system testing accelerates with south africa’s 2020 legislation deadline looming (2019), IMMining

3. Hamersma C.D. H.A., Els P.S., Mining Goes Digital (CRC Press, 2019)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3