Fuzzy Fault Detection for Permanent Magnet Synchronous Motor

Author:

Romanov Alexander

Abstract

In the transition to automated and automatic manufacturing an urgent problem is to increase the reliability of mobile robots (MR) and their drives, creation of devices to monitor the technical characteristics of MR, diagnose and predict the remaining resource. Inspite of the high relevance of the diagnosing MR drives problem, there are no generally accepted methodology for diagnosing MR drives, criteria for selecting methods, parameters and volumes of diagnostics at present. An unsolved problem, related to the diagnosis of MR drives and the prediction of their residual life remains, is the development of methods that allow to carry out of automatic complex multiparametric diagnostics and prediction of the residual life using artificial intelligence methods. Effective fault detection and diagnosis can improve the reliability of the MR drive and avoid costly maintenance. In this paper a fault detection scheme for synchronous motors with permanent magnets based on a fuzzy system is proposed. The sequence current components (positive and negative sequence currents) are used as fault indicators and are set as input to the fuzzy fault detector. The expediency of the proposed scheme for determining of various types of faults for a synchronous motor with permanent magnets under various operating conditions is simulated using the SimInTech software.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3