The Mass Transfer Intensification of Combined Treatment Products

Author:

Skrygin Oleg,Smolentsev Vladislav,Schednov Anton

Abstract

The paper addresses the issues, related to mass transfer of treatment products when using combined forming methods with the application of an electric field. The impact of process components upon strength characteristics of parts has been shown. We have discovered the dependence of allowance removal rate upon the quality of preparation of the reference workpiece surface. The article describes the available industrial and newly developed methods of mass transfer intensification, using the original kinematics of movement, the improvement of the geometrical shape, the position of electrode-tools and the application of various options in the flow of liquid working media, including the cavitational mode, described in detail for the first time. We have disclosed the mechanism of the impulse effect upon treatment products, ejected from the inter-electrode gap by the liquid working medium. The issues have been discussed, concerning the hydrodynamic instability of liquid working media flow, impacting the intensity of mass transfer, with limitations, caused by the impact of side surfaces of holes and channels when processing with a profiled and a non-profiled wire electrode-tool. We have shown the impact of a concentrated ultrasonic beam upon mass transfer of treatment products, formed at a great distance from the electrode.

Publisher

EDP Sciences

Subject

General Medicine

Reference10 articles.

1. Bondar A.B., Smolentsev V.P., Chasovskih Addives A.I, Frame and control of an engineering control in engineering (Oxford, 2001)

2. Bondar A.B, Sukhochev G.A., Smolentsev V.P., State of a surface layer after processing with combined effect (EM – 06, Polska, Bydgoszcz, 2006)

3. Safonov S.V., Smolentsev V.P., Nauka i studia. V international conference «Science and education», 57 (2014)

4. Surface-layer quality in shot treatment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3