Improved robust shortest paths by penalized investments

Author:

Pérez-Galarce FranciscoORCID,Candia-Véjar AlfredoORCID,Maculan Guido,Maculan NelsonORCID

Abstract

Connectivity after disasters has become a critical problem in the management of modern cities. This comes from the need of the decision-makers to ensure urgent medical attention by providing access to health facilities and to other relevant services needed by the population. Managing congestion could help maintain some routes operative even in complex scenarios such as natural disasters, terrorist attacks, protests, or riots. Recent advances in Humanitarian Logistics have handled this problem using different modeling approaches but have principally focused on the response phase. In this paper, firstly, we propose a penalized variant of an existing mathematical model for the robust st path problem with investments. With the aim of solving the robust several-to-one path problem with investments, and due to the high complexity of this new problem, a heuristic is proposed. Moreover, this approach allows us to improve travel times in both specific paths and in a set of routes in a systemic framework. The new problem and the proposed heuristic are illustrated by an example, which corresponds to a typical city network, that provides a concrete vision of the potential application of the framework. Lastly, some managerial insights are given by the analysis of results exhibited in the example network.

Publisher

EDP Sciences

Subject

Management Science and Operations Research,Computer Science Applications,Theoretical Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Traffic Engineering Investment Estimation Method Based on Genetic Algorithm;Lecture Notes in Electrical Engineering;2023

2. Route Optimization as an Aspect of Humanitarian Logistics: Delineating Existing Literature from 2011 to 2022;Lecture Notes in Mechanical Engineering;2023

3. Digital Rural Intelligent Tourism Model on Account of Intelligent Optimization Algorithm;2022 International Symposium on Advances in Informatics, Electronics and Education (ISAIEE);2022-12

4. Integrated Mobile Command Platform for UAV Operation, Inspection and Dispatching;Proceedings of the 2022 4th International Conference on Software Engineering and Development;2022-11-25

5. Optimization Algorithm of Logistics Distribution Path Based on Deep Learning;2022 IEEE 4th International Conference on Civil Aviation Safety and Information Technology (ICCASIT);2022-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3