Unusual Precipitation at Grain Boundaries in Non-Equiatomic CoCrFeMnNi High Entropy Alloys

Author:

Yasuda Hiroyuki Y.1,Horiguchi Masaki1,Cho Ken1,Masuda Takahiro1,Nagase Takeshi2

Affiliation:

1. Osaka University

2. University of Hyogo

Abstract

In Cr-rich CoCrFeMnNi alloys, the precipitation of the σ phase at grain boundaries during recrystallization is so fast that ultrafine-grained structure is formed due to the pinning effect of the precipitates. The average grain size of the fcc parent phase is found to be consistent with modified Zener-Smith model. If conventional alloys come to equilibrium, volume fraction of precipitates should approach a saturation value. However, it is interesting to note that the volume fraction of the σ phase in Cr-rich CoCrFeMnNi alloys is inversely proportional to the average grain size of the fcc parent phase. For instance, in Co20Cr25Fe20Ni15Mn20 alloys, the volume fraction changes from 6.5% to 1.2% with increasing average gran size from 14 μm to 210 μm even after annealing at 1273 K for 100 h. It is well known that heterogeneous nucleation of precipitates at grain boundary is energetically favorable and fast diffusion through grain boundary can assist the precipitation. However, they cannot account for the grain size dependence of the volume fraction after reaching equilibrium. Based on stereology, the reciprocal of grain size is proportional to grain boundary area. Thus, chemical fluctuation at grain boundaries (e.g. segregation) is considered to be related to the unusual precipitation at the grain boundaries.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3