Virtual Laboratory in Mixed Reality with 3D Modelling for Sustainable Design

Author:

Surya R.1,Akila K.1,Senthilkumar K.M.1

Affiliation:

1. Kumaraguru College of Technology

Abstract

Immersive experiences through Mixed Reality (MR) are revolutionizing the way people connect and interact with each other and things around them. MR is the umbrella term that binds all spatial computing technologies which blends real and virtual environments. It holds the potential to provide things beyond imagination while simultaneously making deeper and more meaningful engagement possible. A new engineer to be equipped with the know-how of an OP (Operational Procedure) of machinery, this virtual laboratory helps to know the intricate details of the machinery and tools. The virtual laboratory combines the use of MR technologies, such as augmented reality (AR) and virtual reality (VR), with advanced 3D modeling tools. This virtual laboratory has the potential to revolutionize the sustainable design process by providing an immersive and flexible platform for experimentation, analysis, and collaboration. This project focuses on helping the user to visualize the machine (i.e., Single Drum Piston) and its functionalities through an immersive experience and understand the visual empathy of it. Through 3D Modelling technology, Plane detection and algorithms written with C# script we built this solution with the incorporation of Autodesk Maya and Unity Game Engine. The built solution can be experienced immersive by viewing it through a mobile placed in a headset (Aryzon Headset). This MR experience provides realistic virtual presentations which eases learning of complex modules while analytics ensure understanding of outcomes. It can empower designers and researchers to explore innovative design solutions, optimize resource utilization, and ultimately contribute to the development of more sustainable built environments. This can be incorporated in various other fields like automobile manufacturing, machine industries, construction tool manufacturing, real estate buildings & landscapes, home appliances and furniture, interior design, medical institution, and educational institutions.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3