Poly(O-Phenylene Diamine) Reformed Pencil Graphite as the Disposable Electrochemical Sensor for Voltammetric Analysis of Tryptamine

Author:

Murali Aswathy S.1,Harish Chippy2,Cherian Sherin Susan1,Nair Gayathri S.1,Lekshmi S.K.1,Gopidas Surya1,Saraswathyamma Beena1

Affiliation:

1. Amrita Vishwa Vidyapeetham

2. Sree Narayana College

Abstract

By means of electropolymerization process, a simple as well as proficient electrochemical sensor was developed for electrochemical resolution of tryptamine. The morphology and electrochemistry of thus fabricated poly (O-Phenylene diamine) reformed pencil graphite is evaluated thoroughly by FESEM along with DPV and CV respectively. Under experimental settings, finely resolved irreversible electro-oxidation peak at potential +0.594 V obtained for tryptamine on the altered electrode surface with phosphate buffer of pH 9 as supporting electrolyte. The oxidation peak current and tryptamine concentration are observed to possess linearity in the range of 0.4 μM to 117 μM with R2 = 0.99. Additionally the limit of detection (LOD) for tryptamine quantification is found as 0.2 μM. The sensor exhibited superior analytical properties such as high reproducibility, repeatability and anti-interference capability. The practical efficiency of fabricated sensor tested successfully in cheese obtained from milk.

Publisher

Trans Tech Publications, Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3