Deformation of Carbon Nano Tubes Reinforced Hybrid Laminated Composite Plates induced by Piezoelectric Actuators

Author:

Raju D. Dhanunjaya1ORCID,Rao Venkata V. Subba1

Affiliation:

1. UCEK, Jawaharlal Nehru Technological University Kakinada

Abstract

Piezoelectric materials, typically used as intelligent materials, can respond according to the design demands of the composite structures autonomously. The excitation of piezoelectric actuators generates the bending effect on the hybrid composite plates. An analytical methodology is developed to calculate the displacements of simply supported laminated composite plates induced by piezoelectric actuators and validate the results by generating MATLAB code. Further, the laminated hybrid composite plates reinforced with carbon nanotubes(CNT) are excited by piezoelectric actuators bonded to the surface on both sides with a variable electrical voltage across the thickness. The effects of location, size and thickness ratio of piezoelectric actuators on the deflection of hybrid composite plates are carried out by extending the code. The transverse displacements vary linearly with the applied voltage and size of the piezoelectric actuators. The effect of CNT volume fraction and the position of CNT lamina plays a vital role in deflections, and also it is observed that maximum displacements decrease rapidly as thickness ratio increases from 0.5 to 5 and from 10 to 50, the maximum displacements gradually decrease. Hence, it illustrated that the present technique provides a simple solution for predicting and controlling the deformed shape of reinforced hybrid composite plates induced by distributed piezoelectric actuators.

Publisher

Trans Tech Publications, Ltd.

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3