Electrochemical Behavior of Nanocrystalline NiMoO<sub>4</sub> Hydrate Modified by Ultrasound

Author:

Popovych Olha1,Budzulyak Ivan1,Khemii Mariia1,Ilnytskyi Roman1,Yablon Lyubov1

Affiliation:

1. Vasyl Stefanyk Precarpathian National University

Abstract

To improve the specific capacitance, power and energy of electrical energy storage devices, in particular hybrid capacitors, various methods of cathode material modification are used. One of the methods of modifying nanostructured materials without applying high temperatures, pressures and long reaction times is ultrasonic treatment. Although the interaction of ultrasound with the structure and surface of electrode materials is well enough studied, there are few works that investigate the optimal duration of ultrasonic treatment and its relationship with the capacitive characteristics of these materials. Therefore, we investigated the efficiency of ultrasonic dispersion of nanocrystalline nickel molybdate hydrate for 15, 60 and 90 minutes. The appearance of two cathodic peaks on cyclic voltammetry patterns was analyzed and the charge / discharge mechanism of the electrode based on nanocrystalline NiMoO4 hydrate was presented. Based on the results of potentiodynamic and galvanostatic studies the specific capacitances of the initial NiMoO4 and the material modified by ultrasound for 15, 60 and 90 minutes were calculated. The proton diffusion coefficients of nickel molybdate hydrate were determined on the basis of the Randles–Sevcik equation. NiMoO4 subjected to ultrasonic dispersion for 60 min as a cathode material in a hybrid electrochemical system was tested.

Publisher

Trans Tech Publications, Ltd.

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3