Abstract
Titanium alloys are highly valued in various industries due to their exceptional qualities. This study examines how the build orientation affects the mechanical and fatigue properties of Laser Powder Bed Fusion (PBF-LB) produced Ti6Al4V, without heat treatment. The research shows mechanical properties vary based on build orientation with vertically oriented specimens exhibiting the highest yield and tensile strengths, while vertical orientation excels in ductility, measured through elongation at break. Impact toughness sees variations with horizontal orientation performing the best. However, build orientation has minimal influence on flexural bending fatigue performance. Both diagonal and vertical orientations show similar fatigue limits at around 40 MPa. Dry electropolishing proves to be an effective technique, significantly enhancing fatigue performance with limits stabilizing at about 150 MPa. This study underscores the importance of considering build orientation in PBF-LB manufacturing for specific mechanical and impact properties and the potential of dry electropolishing in improving the fatigue performance of Ti6Al4V components. These findings offer valuable insights for the additive manufacturing industry, aiding in the optimization of Ti6Al4V component production.
Publisher
Trans Tech Publications, Ltd.