Effect of Phase Transformation on Surface Roughening Behavior in Austenitic Thin Metal Foils

Author:

Aziz Abdul1,Yang Ming1,Shimizu Tetsuhide1,Furushima Tsuyoshi2

Affiliation:

1. Tokyo Metropolitan University

2. The University of Tokyo

Abstract

Stainless steels have wide application in the field of micro manufacturing industry. The size effect occur in thin metal foils because of low number of grain. Martensitic phase transformation (MPT) occur after plastic deformation subjected to stainless steel thin metal foils. Beside that, free surface roughening occur in thin metal foils after plastic deformation. The surface roughening mechanism in stainless steel thin metal foils after plastic deformation such as uniaxial tensile test not yet clarified well. MPT and grain misorientation (GMO) have huge effect to surface roughening behavior in stainless steel thin metal foils. The effect of GMO and MPT to surface roughening in SUS 316 and 304 thin metal foils were studied through uniaxial tensile stress state, repeated five times in 6% strain level for one time strain and 30% strain for the total of strain level. After that, an Scanning Electron Microcope-Electron Backscatter Diffraction (SEM-EBSD) analysis applied to 304 and 316 thin metal foils. The result showed that in stainless steel thin metal foil, surface roughening increase proportional both in fine gain (grain size 1,5 μm) and in coarse grain (grain size 9,0μm). The surface roughening in coarse grain, increased higher than in fine grain. The grain strength in SUS 304 is more inhomogeneous compared to SUS 316 that shown by SEM-EBSD results and as a result, increasing ratio of the surface roughness (Ra) is higher in fine grain and coarse grain of SUS 304 compared to SUS 316. The inhomogeneity of the grain strength in SUS 304 thin metal foil is higher than SUS 316 thin metal foil as shown by SEM-EBSD result. Furthermore, the increased surface roughness in stainless steel 304 is higher than stainless steel 316 thin metal foil both in fine grain and coarse grain. Key words : Surface roughening, Martensitic phase transformation (MPT), Grain Misorientation.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3