Brain Tumor Segmentation Using Modified Double U-Net Architecture

Author:

Shaji Thejus1,Ravi K.1,Vignesh E.1,Sinduja A.1

Affiliation:

1. SRM Institute of Science and Technology

Abstract

Children and the elderly are most susceptible to brain tumors. It's deadly cancer caused by uncontrollable brain cell proliferation inside the skull. The heterogeneity of tumor cells makes classification extremely difficult. Image segmentation has been revolutionized because of the Convolution Neural Network (CNN), which is especially useful for medical images. Not only does the U-Net succeed in segmenting a wide range of medical pictures in general, but also in some particularly difficult instances. However, we uncovered severe problems in the standard models that have been used for medical image segmentation. As a result, we applied modification and created an efficient U-net-based deep learning architecture, which was examined on the Brain Tumor dataset from the Kaggle repository, which consists of over 1500 images of brain tumors together with their ground truth. After comparing our model to comparable cutting-edge approaches, we determined that our design resulted in at least a 10% improvement, showing that it generates more efficient, better, and robust results.

Publisher

Trans Tech Publications Ltd

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved brain tumour segmentation using modified U-Net model with inception and attention modules on multimodal MRI images;Australian Journal of Electrical and Electronics Engineering;2024-01-02

2. Impact of a generalised SVG-based large-scale super-resolution algorithm on the design of light-weight medical image segmentation DNNs;Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization;2023-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3