Modelling of Ceramic Particle Motion during Semi-Solid Forming of Aluminium Matrix Composites via CFD-DEM Four-Way Coupling

Author:

Speth Marco1,Heine Johannes1,Riedmüller Kim Rouven1,Liewald Mathias1

Affiliation:

1. University of Stuttgart

Abstract

Today, aluminium matrix composites (AMC) are widely used for the manufacturing of lightweight, yet highly stressed components in automotive, aeronautic and electrical engineering. In order to achieve particle distributions as homogeneous as possible within these component’s volumes and thus ensure optimum component properties, efforts are being made to simulate the manufacturing process prior to production. In this paper, AMC with extremely high particle fractions of more than 25 vol.% are considered in particular, as their processing still poses significant technological challenges. To model the particle motion in a computational fluid dynamics (CFD) simulation of the semi-solid forming process of this type of materials, a Lagrangian multiphase approach combining CFD and discrete element method (DEM) was used. Here, the DEM allowed all particle-particle interactions to be considered. Thus, different parameters influencing particle agglomeration, particle distribution as well as particle interaction with the cavity can be investigated during a numerical study. More specifically, the influence particle parameters such as cohesion forces and the influence of the forming speed onto the particle distribution in the final component ́s volume was analysed. The simulations were performed for a symmetric disc geometry. A forming tool was already available for this geometry, with which components could be manufactured to validate the simulation results. In the end, the study shows that by using four-way CFD-DEM coupling, simulation predictability for the semi-solid forming process of AMC could be significantly improved.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3