The Development of Monolithic Silicon Carbide Intracortical Neural Interfaces for Long-Term Human Implantation

Author:

Frewin Christopher1,Beygi Mohamad2,Bernardin Evans2,Feng Chen Yin2,La Via Francesco3,Dominguez-Viqueria William4,Saddow Stephen E.2

Affiliation:

1. NeuroNexus, LLC

2. University of South Florida

3. CNR-IMM

4. USF Moffit

Abstract

Silicon Carbide (SiC) has been demonstrated as both a bio- and neuro-compatible wide-band-gap semiconductor with a high thermal conductivity and magnetic susceptibility and may be potentially compatible with human brain tissue. Two single-crystal, solid-state forms of SiC have been used to create monolithic intracortical neural implants (INI) without using physiologically exposed metals or polymers, thus eliminating many known reliability challenges in-vivo through a single, homogenous material. Amorphous SiC (a-SiC) was used to insulate 16-channel functional INI and the electrochemical and MRI compatibility (7T) performance were measured. 4H-SiC interfaces were fabricated using homoepitaxy,alternating epitaxial films of n-type and p-type forming an isolating PN junction which prevents substrate leakage current between the 16 adjacent electrodes and traces fabricated which were formed using deep-reactive ion etching (DRIE). 3C-SiC interfaces were fabricated in a similar fashion, but the epitaial conductive layers were grown on on both bulk crystalline (100) silicon and SOI wafers. In both cases a conformal coating of a-SiC was used as the top-side insulator and windows opened using RIE to allow electrochemical interaction. Electrochemical charaterization achieved through electrochemcial impedance spectroscopy (EIS) and cyclic voltammetry (CV) indicates performance on par, or exceeding, that of Pt reference electrodes with the same form fit. While magnetic resonance imaging (MRI) is an essential, non-contact method used to investigate issues with the nervous system, the high field MRI (e.g., 3 T and higher) necessary for proper diagnosis can be a safety issue for patients with INI due to inductive coupling between the powerful electromagnetic fields and the implanted device. This results in having to use lower electromagnetic field power (less than 1.5T), and therefore lower resolution, which hinders diagnostic prognosis for these patients. In this work the MRI compliance of epitaxial, monolithic SiC INI was studied. The specific absorption rate (SAR), induced heating, and image artifacts caused by the portion of the implant within a brain tissue phantom located in a 7 T small animal MRI machine were estimated and measured via finite element method (FEM) and Fourier-based simulations. Both the simulation and experimental results revealed that free-standing 3C-SiC films had no observable image artifacts compared to silicon and platinum reference materials inside the MRI at 7 T while FEM simulations predicted an ~30% SAR reduction for 3C-SiC compared to Pt. These initial simulations and experiments indicate a SiC monolithic INI may effectively reduce MRI induced heating and image artifacts in high field MRI.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3