Investigation of Peptization Technique to Synthesize Si@TiO<sub>2</sub> for a Li-Ion Battery Anode Material

Author:

Vats Bhavya Nidhi1,Gupta Raghvendra1,Gupta Amit1,Fatima S.1,Kumar Deepak1

Affiliation:

1. Indian Institute of Technology

Abstract

Electric vehicles (EVs) have a significant advantage in terms of energy efficiency and environmental friendliness. In lithium-ion batteries, silicon is seeking more attention than graphite-based anodes due to its high storage capacity. However, it faces severe structural degradation due to volume expansion which is responsible for fast capacity degradation. In the present study, the core shell is developed with the core as silicon and titania as shell (Si@TiO2) and utilized it as an anode in the 2016-coin cell. The material characterization (FE-SEM, TEM, EDS, XRD and XPS) of this developed core-shell material is recorded to confirm its elemental composition and structural validation. The electrochemical performance is measured using cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) test. Cyclic voltammetry profiles reveal the stable lithiation and delithiation process. Initial specific capacity of ≈3180 mAh/g is reported, capacity retention of 61% for the developed core-shell while 34% for the bare silicon is noted over 100 cycles. The proposed method (peptization technique) for the development of core-shell nanoparticles is also compared with the sol-gel approach. The result shows an increment of 5% in capacity retention after 100 cycles by following the peptization technique.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3