Structural and Electrical Properties of Barium Strontium Cobaltite Nanoparticles Synthesized by Wet Chemical Methods

Author:

Akhtar Tanveer1,Farooq Omer1,Anis-ur-Rehman Muhammad1

Affiliation:

1. COMSATS Institute of Information Technology

Abstract

Barium strontium cobaltite (Ba0.5Sr0.5CoO3−δ) nanoparticles were synthesized by using without water and surfactant (WOWS) sol-gel method, co-precipitation method and composite mediated hydrothermal method (CMHM). Co-precipitation synthesis was carried out for 0.4 M precursors solutions of strontium nitrate Sr (NO3)2, cobalt nitrate hexahydrate Co (NO3)2·6H2O and barium nitrate Ba (NO3)2 and with the sodium hydroxide NaOH as precipitating agent, sol-gel synthesis was done using ethylene glycol as precipitating agent and the CMHM synthesis was done using sodium hydroxide and Potassium hydroxide (NaOH-KOH) as reactants and precipitating agents at 180 °C for 65 min. Calcination of the synthesized samples was done at 830 °C for 02 hours. Pellets of calcined powder was sintered at 850 °C for 20 minutes. X-ray diffraction (XRD) study was used to find the structural parameters (crystal structure, crystallite size and phase purity). The observed phase transformation of pure barium strontium cobaltite monoclinic to orthorhombic structure was found after heat treatment. Crystallite sizes were calculated by using Scherrer’s formula. Temperature dependent (100 to 600 °C) dc conductivities of the sintered pellets were measured and found to be increased with the successive increase in measuring temperature. Temperature dependent (100 to 600 °C) impedances of all samples synthesized through wet chemical methods at fixed frequency of (10kHz) was also measured and compared. The structural and AC/DC electrical properties were correlated to different synthesis methods. The synthesized samples can be thought as an electrode material for intermediate temperature range solid oxide fuel cells (IT-SOFCs).

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3