Relationship between Microstructure and Tensile Strength in the Directionally Solidified (23-27) at. % Al-Ni Alloys

Author:

Lu Y.1,Kim H.C.1,Lee Je Hyun1,Oh Myung Hoon2,Wee Dang Moon3,Hirano Toshiyuki4

Affiliation:

1. Changwon National University

2. Kumoh National University of Technology

3. KAIST - Korea Advanced Institute of Science and Technology

4. National Institute for Materials Science

Abstract

Directional or single crystal technique was applied to enhance the ductility, and two phases of γ (Ni) phase or β (NiAl) phase in γ‘(Ni3Al) matrix were also considered to increase the strength and ductility. In this study, directionally solidified rods were prepared at the solidification rate of 50µm/s in 23-27 at.% Al-Ni alloys, and tensile strengths of these rods were analyzed at room temperature. Directionally solidified samples showed the γ dendrite fibers formed in the Ni3Al matrix in the hypo eutectic composition of 23 at.% Al, the γ‘ single phase in the eutectic composition of 24.5 at. % Al, and the β dendrite fibers in the γ‘ matrix in the hyper eutectic compositions of 25, 26, 27 at.% Al. The hypoeutectic alloy including γ dendrites with γ‘ matrix exhibited a large elongation of over 70% with ductile transgranular fracture at room temperature. With increasing Al contents, the γ dendritic microstructure changed to the β dendrite in the γ‘ matrix, which resulted in decreasing the elongation by increasing the volume fraction of the brittle β dendrites in the ductile γ’ matrix.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nickel aluminides;Intermetallic Matrix Composites;2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3