Enhancement of Formability in Magnesium Alloy AZ31B via Friction Stir Processing

Author:

Sato Yutaka S.1,Sasaki A.1,Sugimoto A.1,Honda A.1,Kokawa Hiroyuki1

Affiliation:

1. Tohoku University

Abstract

Mg alloy has a poor formability at room temperature because of lack of the active slip systems, but the grain refinement improves its ductility. Friction stir processing (FSP) can create homogeneous microstructure consisting of fine grains in Mg alloys, thus it would be expected that FSP enhances the formability of Mg alloys. In this study, multi-pass FSP was applied to Mg alloy AZ31B, and then formability of FSPed alloy was evaluated. Multi-pass FSP produced the fine recrystallized grains in Mg alloy. The stir zone exhibited larger fracture limit major strains than the base material under uniaxial tension and plane strain deformation, and these values increased with decreasing grain size. The stir zone having grain size of 2.9 μm showed the fracture limit major strains which are roughly as same as those of an annealed pure Al. The present study suggests that FSP is an effective method to enhance the formability of Mg alloys.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3