Affiliation:
1. Northwestern Polytechnical University
2. Shenzhen Aerospace Precision Tools Co., Ltd.
3. Toyama University
Abstract
The microstructure and mechanical properties including room temperature fracture toughness Kq, tensile strengthσb and elongationδ at 1250°C of the Nb based alloy directionally solidified in an electron beam floating zone melting (EBFZM) furnace have been evaluated. The microstructure is primarily composed of Nb solid solution (Nbss), α-(Nb)5Si3 and (Nb)3Si phases. After directional solidification with the moving rate of electron beam gun R being respectively 2.4, 4.8 and 7.2 mm/min, the primary Nbss dendrites, Nbss + (Nb)5Si3/(Nb)3Si eutectic colonies (lamellar or rod-like) and divorced Nb silicide plates align along the longitudinal axes of the specimens. When R = 2.4 mm/min, the best directional microstructure is obtained. Directional solidification has significantly improved theσb at 1250°C and Kq. The maximumσb occurs for the specimens with R = 2.4 mm/min and is about 85.0 MPa, meanwhile, the Kq is about 19.4 MPam1/2.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献