Preparation of Propiolic Acid Doped Polyaniline and Investigation of Opto-Electronic Properties

Author:

Ahlatcioglu Esma1,Okutan Mustafa2,Senkal Bahire Filiz1

Affiliation:

1. Yildiz Technical University

2. Istanbul Technical University

Abstract

Among the conducting polymers, polyaniline is of vital importance as an electronicmaterial [1{4] because of its easy synthesis, environmental stability, reversible proton dopabil-ity, redox recyclability, cost-e ectiveness, and reasonable electrical conductivity. Electrical andoptoelectronic applications of conducting polymers often require high current densities thatcan be achieved by either heavy doping or a high-level carrier injection. Polyaniline occurs infour oxidation states (i.e., leucoemeraldine, emeraldine base, emeraldine salt, and pernigrani-line), out of which only emeraldine salt is conductive in nature (the others are insulating innature). Polyaniline (PANI) exists in a variety of forms that di er in chemical and physicalproperties [5{9].Polyaniline is one of the most promising conducting materials for applications in optoelec-tronics and microelectronics devices.The doping of polyaniline can be accomplished through protonic acid and oxidative doping.Protonic acid doping of emeraldine base units results in complete protonation of imine nitrogenatoms to give the fully protonated emeraldine salt [10, 11].The AC (alternative current) conductivity properties of Polyaniline (PANI) and doped PANIparallel plate materials were investigated by impedance spectroscopy. The real part of conduc-tivity (0), and the real part of impedance (Z0p) were measured in the logarithmic frequencyrange of 100 to 1.5x107 Hz at 25, 40, 50 and 100 C temperatures. The AC conductivity value ofthe undoped PANI is high values for polymeric materals to ionic conduction and electrode po-larization in low frequency. The alternative current (AC) conductivity increases with increasingMB concentration and the frequency.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3