Synthesis and Biological Properties of Thin-Film Materials on the Basis of SiO2–P2O5–СаO–Na2O System

Author:

Borilo Lyudmila P.1,Lyutova Ekaterina S.1,Spivakova Larisa N.2

Affiliation:

1. National Research Tomsk State University

2. National Research Tomsk Polytechnic University

Abstract

Thin films for the SiO2–P2O5–CaO–Na2O system are synthesized using sol-gel method. Content of the oxides in the system is 52-18-20-10 wt.% correspondingly. Thin films were produced from film-forming solutions on the single-crystal silicon substrates (model substrate) by extraction at a velocity of 5 mm/s following by heat treatment at a temperature of 60-80 °С for 20 minutes and at a temperature of 600 °С for 1 hour. During the experiment it was established that film-forming solutions are usable only for 2 to 7 days from the moment of preparation. Using thermal and infra-red – spectroscopic analysis main stages of oxide system formation were retraced. On the surface of the material NaCl, CaCl2, H2PO4·H2O, Ca5(PO4)3Cl, and SiO2 phases are being registered. Presence of the significant amount of pores leads to the essential increase in the specific surface area, creating optimal conditions for the new bone tissue formation. Biological activity of the received material was evaluated in SBF environment. Ca and P content on the surface of the material increased twofold in two weeks. Such material interchanges calcium ions and phosphate ions with solution; silanol groups fix calcium ions, furthering the formation of the layer of amorphous calcium phosphates gradually crystallizing in hydroxyapatite, and other calcium phosphates. Presence of magnesium and sodium on the surface of the samples after their immersion into SBF solution indicates the settling of SBF solution components on the film surface.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3