Enhancement of Lemaitre Model to Predict Cracks at Low and Negative Triaxialities in Sheet Metal Forming

Author:

Isik Kerim1,Doig Maria2,Richter Helmut3,Clausmeyer Till1,Tekkaya A. Erman1

Affiliation:

1. University of Dortmund

2. Inpro

3. ThyssenKrupp Steel Europe AG

Abstract

Advanced high strength steels are still one of the best alternatives for light weight design in the automotive industry. Due to their good performances like high strength and high energy absorption, those steel grades are excellent for body in white components. Because of their restricted ductility, which sometimes leads to the formation of cracks without or low necking during forming operations, conventional forming limit diagrams may fall short. As a remedy, an enhanced variant of the Lemaitre continuum mechanical damage model (CDM) is presented in this work.Previous model extensions of the Lemaitre model improved the damage prediction for the shear and compression dominated stress states by introducing an additional weighting factor for the influence of compression on damage evolution, the so called crack closure parameter h. However, the possible range of the fracture behavior predicted by such models for low and negative stress triaxialities is limited. In this work, the Lemaitre CDM has been enhanced by considering the maximal shear stress to predict the fracture occurrence under shear. Previous models for the effect of void closure on damage evolution are reviewed and a novel model enhancement taking into account the maximal shear stresses is described. The determination of the damage model parameters is presented for a dual phase steel. For this particular material, the response of model enhancement on the failure prediction is discussed for a test part.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3