Synthesis of Cyanate Ester Based Thermoset Resin by Using Copper (II) Oxalate as Catalyst and its Application in Carbon Fiber Composites

Author:

Shah Syed Sajid Ali1,Nasir Habib2,Ul-Haq Noaman3

Affiliation:

1. National University of Sciences and Technology

2. National University of Science and Technology

3. COMSATS Institute of Information Technology

Abstract

Polymer matrix plays a crucial role in the development of advanced light weight composite materials, and is mainly responsible for thermal and mechanical properties. These polymer matrices are usually thermosetting plastics due to their ease of processing. Thermoset resins were prepared using different compositions of dicyanate ester of bisphenol A and polyether imide and carbon fiber laminates were prepared by wet layup technique. Small amount of epoxy (diglycidyl ether of bisphenol A) was also added to the composites to improve the (interfacial) bonding between the carbon fiber and the resin. The Copper (II) oxalate with 1,5-pentanediol was used as a catalyst for the first time to reduce the curing time from eight hours to four hours. The catalyst has also reduced the curing temperature from 400°C to 250°C. The catalyst Copper (II) oxalate is commercially available. The plasticizer has improved the thermal and mechanical properties of the matrix significantly. The addition of epoxy to the thermoset resin improved the (interfacial) bonding between the resin and carbon fiber. FTIR results suggest that the polymerization reaction of dicyanate results in the formation of trizine ring with phenolic group. SEM results show the interaction of bisphenol A dicyanate (BPADCy) monomer to form polymer matrix. SEM images also represent a uniform anchoring of matrix on the individual carbon filament. It is clear from thermal analysis that sample having 85% BPADCy and 15% polyetherimide (BPR-2) shows the greater thermal stability which is due to the reaction of epoxy with cyanate matrix.

Publisher

Trans Tech Publications, Ltd.

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3