Influence of Packing Phase Parameters in the Optimization of Mechanical, Weight Reduction and Dimensional Properties of Microcellular Foaming Injection Molding of Polypropilene

Author:

Fernandez Angel1,Muniesa Manuel1

Affiliation:

1. University of Zaragoza

Abstract

Microcellular foaming of injected plastics offers the possibility to manufacture parts with reductions in costs and weight if compared with conventional injection molding. For this reason there is an increasing interest in challenging applications such as HEV (hybrid and electrical vehicles) and lightweight material applications in general. Complexity of microcellular injection molding is very high because the final properties of the material obtained depend largely on the processing conditions and these in turn unalterable factors such as mold design and manufacturing. The shrinkage of the molded part must be applied as an oversize of the mold cavity in the design phase. Shrinkage of a microcellular foam depends on the reduction of foam density. Moreover, the piece is designed to get a mechanical performance and meet the dimensional tolerances. Knowing that the reduction of foam density implies a reduction of the mechanical properties and influences the final piece dimensions the conclusion is that the microcellular injection process has a very small process window to fit all these factors. This research focuses on two objectives. First is the variation of post-molding shrinkage in terms of reduction of weight to determine the process window. Second is the determination of mechanical properties which do not show a proportional reduction but exponentially with weight reduction components. The results obtained with a 750 Tons. injection moulding machine equipped with a MuCell plastication unit and a large spiral mold have shown small variations in the dimensions for a predetermined process window and smaller reduction of mechanical properties with weight reductions for 20% talc filled polypropylene. The goal of this applied research is that all experiments have been developed with scaled-industry tools (large injection molding machine, Mucell unit and mold and test parts) comparing with conventional injection molding.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3