Bismuth-Antimony as an Alternative for High Temperature Lead Free Solder

Author:

Shahrul Fadzli M.Z.1,Azmah Hanim M.A.1,Sai Hong T.1,Aidy A.1,Rohaizuan R.1

Affiliation:

1. Universiti Putra Malaysia

Abstract

The development works on high temperature lead free solder are mostly discussed nowadays. To replace the current high temperature lead free solders, further research need to be done. A great deal of effort has been put into the development of lead free solder alloys. Bi (Bismuth) and Sb (Antimony) solder system proved as one of the promising candidates for electronic assembly. Melting temperature of three Bi-Sb solder alloys studied in this research enhanced their potential as the alternative solder candidates for high temperature lead free solder. At interface, Cu3Sb IMC layer was formed for 95Bi-5Sb solder alloy. Spallation of Cu3Sb IMC layer took placed with the results of Cu3Sb IMC also found in the solder bulk. Analysis of 97.5Bi-2.5Sb solder alloy classified as no metallurgical reaction at the interface and only the mechanical joining existed at the interface. The dissolution of Cu from subtrate affected the formation of Cu rich phase and the unstable Bi-Cu rich phase phenomena act as the isothermal product found in solder bulk. Mechanical grain boundary grooving observed in 98.5Bi-1.5Sb solder alloys at interface. Different compositions of Bi-Sb solder alloys resulted in different types of microstructures at interface and in solder bulk after reflow.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Microstructure Growth Morphologies, Macrosegregation, and Microhardness in Bi–Sb Thermal Interface Alloys;Advanced Engineering Materials;2020-03-13

2. Bi-Based Interconnect Systems and Applications;Harsh Environment Electronics;2019-03-29

3. Enhancement of melt-spun process Bi–Ag lead-free solder for high temperature applications;Journal of Materials Science: Materials in Electronics;2018-10-16

4. Phase Equilibria in the Cu-Sn-Sb Ternary System;Journal of Phase Equilibria and Diffusion;2018-10-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3