Structural, Optical and Morphological Studies on Nanostructure ITO Thin Films

Author:

Balasundraprabhu Rangasamy1,Muthukumarasamy N.2,Monakhov E.V.3,Svensson B.G.3

Affiliation:

1. P.S.G College of Technology

2. Coimbatore Institute of Technology

3. University of Oslo

Abstract

Indium tin oxide (ITO) thin films exhibiting good transmittance and conductivity suitable for solar cell applications have been prepared on Si(100) and fused silica substrates by optimizing the dc sputtering parameters such as power density and Ar partial pressure. Structural analysis of the as-deposited and annealed ITO films indicated that the as-deposited films are predominantly amorphous, whereas the films annealed at 200–400 °C are found to be of polycrystalline nature exhibiting dominant peaks corresponding to the (222) and (400) planes. The optical transmittance and band gap values of the films are observed to exhibit a change on annealing. From the ellipsometry studies on ITO/Si annealed at 300°C, it is found that graded layer consist of the mixing of two ITO materials with slightly different optical constants and the grading is almost linear. The resistivity of the ITO films is found to decrease with annealing temperature, correlating with the improvement in the crystal quality, and values in the range of 2-3 x10-4 Ω-cm are observed for the films annealed at 300°C. Surface topography study of the films has been performed using atomic force microscope(AFM) and the results are discussed.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3