A Rapid and Sensitive Ether Sensor Utilizing Thermal Desorption Coupled with Cataluminescence

Author:

Cui Zhi Gang1,Zhang Shao Tong1,Zhao Jin1,Zhou Kao Wen1

Affiliation:

1. Beijing Union University

Abstract

A rapid and sensitive cataluminescence (CTL)-based gas sensor using nanosized Y2Zr1.5O6 as a probe was proposed for direct determination of ether in air. Trace ether was firstly absorbed on active carbon at room temperature to concentrate, then desorbed at 65°C to determine. The sensor showed high selectivity to ether at wavelength of 510nm, satisfying activity at temperature of 310°C and good stability at carrier flow rate of 110 ml/min. The linear range of CTL intensity versus concentration of ether was 2~100 mg/m3, and the detection limit (3σ) was 1.1 mg/m3. The recovery of artificial sample was 95.4%—106.7% by this method. The response to formaldehyde, benzene, NH3 and ethanol was insignificant, and there was no response to SO2, CO and acetone. The technique is a convenient and fast way of determining ether in air.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3