Effect of Annealing on Proton Conductivity of Aquivion-Like Proton-Exchange Membrane

Author:

Mugtasimova Kamila R.1,Melnikov Alexey P.1,Galitskaya Elena A.2,Ryzhkin Ivan A.2,Ivanov Dimitri A.3,Sinitsyn Vitaly V.2

Affiliation:

1. Moscow Institute of Physics and Technology (State University)

2. Institute of Solid State Physics, Russian Academy of Sciences

3. Russian Academy of Sciences

Abstract

Proton-conducting membranes were fabricated from a new short-side chain ionomer Inion (Russian analogue of Aquivion) by solution casting method. A series of temperature treatment experiments was conducted to show that annealing of Inion membranes at the temperature range from 160 °C to 170 °C leads to a significant increase of specific proton conductivity to values even higher than those of commercial membrane Nafion NR212. An explanation of this fact can be given by considering the membranes’ proton transport mechanism and water behavior models in nanopores. Matching the proton conductivity mechanism of the membranes, which is realized in nanostructured channels with the diameter of about several nanometers according to the Grotthuss proton hopping mechanism, and the model of water and ice states in nanopores leads to the comprehensive understanding for the further optimization of the membranes to achieve high transport characteristic. For example, it can be improved by increasing the number of side-chain branches of the polymer.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3