Affiliation:
1. Siirt University
2. Kırşehir Ahi Evran University
3. Indiana University
Abstract
Machine learning (ML) has recently made a major contribution to the fields of Material Science (MS). In this study, ML algorithms are used to learn atoms types over structural geometrical data of anatase TiO2 nanoparticles produced at different temperature levels with the density-functional tight-binding method (DFTB). Especially for this work, Random Forest (RF), Decision Trees (DT), K-Nearest Neighbor (KNN), Naïve Bayes (NB), which are among the most popular ML algorithms, were run to learn titanium (Ti) and oxygen (O) atoms. RF outperforms other algorithms, almost succeeding in learning this skewed data set close to perfect. The use of ML algorithms with datasets compatible with its mathematical design increases their learning performance. Therefore, we find it remarkable that a certain type of ML algorithm performs almost perfectly. Because it can help material scientists predict the behavior and structural and electronic properties of atoms at different temperatures.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献