Mechanism of Silicon Plate Decay in Aluminum Matrix under Electron Beam Effect

Author:

Sarychev Vladimir1,Nevskii Sergey1,Konovalov Sergey2,Semin Alexander1,Martusevich Elena1,Gromov Victor1ORCID

Affiliation:

1. Siberian State Industrial University

2. Samara National Research University

Abstract

The decay mechanism of silicon particles in silumin in the thermal effect zone of low-energy high-current electron beam is proposed. Its essence consists in the fact that under the effect of the mechanical stresses the interface of silicon inclusion with aluminum matrix becomes instable resulting in the decay of silicon particle. It was supposed that the instability was the analog of Rayleigh-Taylor instability. The mechanical stresses arising due to the discrepancy of the elastic moduli and the linear expansion coefficients of the inclusion and the matrix are the analogs of gravity force. The analysis of the initial stage of instability within the frameworks of the visco-potential approximation has shown that the dependence of the rate of perturbations’ growth has only one maximum which falls on the wave length of the order ≈ 500 nm that is 5-fold higher than that of the experimental data. Such a discrepancy may be explained by the fact that when developing the model the temperature of the silicon inclusion and the aluminum matrix was considered to be constant, similar and being equal to the eutectic temperature of silumin. In fact, the temperatures of the inclusion and the matrix are different. To take into account the influence of these facts on the instability of the interface the new investigations are necessary.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3