Abstract
The present study is focused on joining two ultra-high strength steels plates of 3 mm thickness using laser-welding. Abrasion resistant steel with martensitic structure, tensile strength (Rm) ≥ 2 GPa, and cold-deformed austenitic stainless steel, Rm 1.3 GPa, were used for the dissimilar butt joints. Two different laser energy inputs, 160 and 320 J/mm, were presented during welding. The weld morphology and microstructural evolution of the fusion zone were recorded using optical microscopy and electron back scattering diffraction (EBSD), respectively. The mechanical properties of the dissimilar joints were evaluated by hardness measurements and tensile tests. It was found that fusion zone has undergone a change in morphology and microstructure during welding depending upon the energy input. Analysis of the microstructural evolution in the fusion zone by EBSD examination showed that the presence of a mixture of small austenite grains in a matrix of martensite. The changes in hardness profiles and tensile strength under the experimental parameters were further reported.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献