Testing of Photocatalytic Activity of Self-Cleaning Surfaces

Author:

Lavrenčič Štangar Urška1,Kete Marko1,Černigoj Urh1,Ducman Vilma2

Affiliation:

1. University of Nova Gorica

2. Slovenian National Building and Civil Engineering Institute

Abstract

Due to relatively successful application of TiO2 photocatalysis in the field of self-cleaning surfaces, a reliable and appropriate quantitative method for determining the self-cleaning efficiency of the products (photocatalyst films on different supports) should be widely recognized and established. Currently, the two standard methods are based on photobleaching of methylene blue aqueous solution in contact with thin solid catalyst layer, and on photodegradation of a solid fatty deposit (e.g. stearic acid) over catalyst layer followed indirectly by water contact angle (CA) measurements. Another method proposed recently is based on the entrapment of an organic dye in a solid polymer matrix deposited over the photocatalyst layer. Upon illumination, the dye (e.g. resazurin) is reduced by the photogenerated electrons to the form of a different colour or to the bleached form. Recently, a new method for determination of self-cleaning activity of photocatalytic surfaces was developed in our laboratory. It is based on the deposition of a transparent solid layer comprising terephthalic acid over the photocatalytic surface. When such a system is irradiated, among the other degradation products also a hydroxyterephthalic acid is formed due to a reaction between photoexcited TiO2 and terephthalic acid. Hydroxyterephthalic acid is a highly fluorescent molecule and can be easily detected by HPLC-FLD or spectrofluorimeter. Many different samples were tested using this method and using the standard method based on photodegradation of a solid fatty deposit over the catalyst layer. Regarding the sample (substrate) type, the focus was given to the self-cleaning ceramic tiles coated with TiO2-SiO2 thin films that were produced in cooperation with the major manufacturer of floor ceramic tiles in Slovenia, Martex d.o.o.. In case of self-cleaning ceramics and some other sample types, the advantages of the new method over standard methods were highlighted and critically evaluated.

Publisher

Trans Tech Publications Ltd

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3