Development of Stainless Steels in Nuclear Industry: With Emphasis on Sodium Cooled Fast Spectrum Reactors History, Technology and Foresight

Author:

Baldev Raj1,Kamachi Mudali U.1,Vijayalakshmi M.1,Mathew M.D.1,Bhaduri A.K.1,Chellapandi P.1,Venugopal S.1,Sundar C.S.1,Rao B.P.C.1,Venkatraman B.1

Affiliation:

1. Indira Gandhi Centre for Atomic Research

Abstract

Stainless steels (SS) have earned a unique position as a widely accepted class of alloys with track record of steadily improving the performance and increasing applications from 1913 till date. This distinction is attributed to R&D, innovations and applications leading to harnessing the rare combination of properties of stainless steels, since its discovery hundred years back. Though the initial discovery of stainless steel is basically serendipity, and based on previous work, its indispensable position today, in many a wide range of applications is due to intense R&D efforts in understanding its physical, chemical, thermal and thermo-mechanical response for various chemistries and microstructures. A deliberate attempt to extend its application spectrum through various routes of manufacturing in the last century is another crucial aspect of the success story. The first part of the presentation would briefly review this exciting journey of unravelling the mysteries of stainless steels.The second part of the presentation would highlight the evolution of stainless steels in the nuclear industry, especially for the sodium cooled fast reactors. Early 70s have seen the application of stainless steels in first generation water based nuclear power plants and AISI types 304 and 316 SS was recommended for structural and core applications in fast spectrum reactors (FSR). Failure of some of the components even in the manufacturing stage and quest for improving mechanical properties and sensitisation and intergranular corrosion resistances resulted in the development of 304L, 304LN, 316L, 316LN SS during 1980-90 for further applications in FSRs. Towards core applications in intense radiation environments, three generations of stainless steels namely 20% cold worked 316 SS, D9, and D9I have been developed to yield high burnup and to triple the lifetime of the core components of the fast reactors. Towards closing the fuel cycle, again 304L SS was the workhorse material which was upgraded with newer varieties like nitric acid grade alloys for improved corrosion resistance and longer life. Manufacturing of special grades of SS and the developments in fabrication technologies was necessary in order to enhance the performance of components and to avoid failures. Welding, inspection, quality assurance and structural integrity of various components of SS for FSRs and fuel cycle facilities resulted in developments in areas like modelling, devices, methodologies and analysis. An opportunity existed for the development and application of innovative non-destructive testing techniques for robust examination of critical components.Nuclear industry is embarking a state of the art fourth generation reactors. The consequent newer generation of SS are evolving with improved properties to match the expectations of performance in increased temperature, pressure, chemical and other physical constraints. It is of paramount importance to consider the extension of the lifetime of the current reactors from 40-60 to 60-80 years for economic considerations, and in this regard innovations are necessary in the development of newer varieties of stainless steels with respect to modelling and life prediction, manufacturing, fabrication, testing and evaluation. Thus the management approach to knit a network of industry-research-academia is a key approach for way forward. A development of roadmap for robust science based technology development with foresight is a desired management strategy.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference37 articles.

1. Information on http: //www. EngineeringToolBox. com/stainless_steel_classifications_d_ 368. html.

2. I. Alvarez-Armas, S. Degallaix-Moreuil, Duplex Stainless Steels, John Wiley & Sons Inc., NJ, (2013).

3. E. Perelome, D.V. Edmonds, Phase Transformations in Steels, Woodhead Publishing Series in Metals and Surface Engineering No 57, Woodhead Publishing Ltd., Cambridge, UK, (2012).

4. 75 Years of Stainless Steel 1913-1988, British Steel Stainless, Shaffield, UK, (1988).

5. Pascal PAYET-GASPARD, Stainless steel a bright future in a changing world? BIR World Annual Conference, Rome, Italy, May (2012).

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3