An Adaptive Chaos Quantum-Behaved Particle Swarm Optimization Algorithm for Real-Time Dispatch in Power System with Wind Generation

Author:

Wu Zhi Kui1,Deng Chang Hong1,Xiao Yong2,Zhao Wei Xing2,Xu Qiu Shi3

Affiliation:

1. Wuhan University

2. Guizhou Power Grid Corporation

3. Economic Research Institute of Hubei Electric Company

Abstract

A real-time dispatch (RTD) model for wind power incorporated power system aimed at maximizing wind power utilization and minimizing fuel cost is proposed in this paper. To cope with the prematurity and local convergence of conventional particle swarm optimization (PSO) algorithm, a novel adaptive chaos quantum-behaved particle swarm optimization (ACQPSO) algorithm is put forward. The adaptive inertia weight and chaotic perturbation mechanism are employed to improve the particle’s search efficiency. Numerical simulation on a 10 unit system with a wind farm demonstrates that the proposed model can maximize wind power utilization while ensuring the safe and economic operation of the power system. The proposed ACQPSO algorithm is of good convergence quality and the computation speed can meet the requirement of RTD.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

Reference5 articles.

1. E. Denny, and M. O'Malley: IEEE Trans. Power Syst., vol. 21, no. 1, p.341–347, Feb. (2006).

2. Wang Xing, Song Yonghua, and Lu Qiang: IEEE Trans. Power Syst., vol. 17, no. 2, pp.482-490, (2002).

3. M. Djukanovic, M. Calcvic, B. Milosevic, and D. J. Sobajic: IEEE Trans. Energy Convers., vol. 11, no. 4, p.755–761, Dec. (1996).

4. Song Ying, Chen Zengqiang, and Yuan Zhuzhi: IEEE Trans. Neural Net., vol. 18, no. 2, p.595–601, Mar. (2007).

5. Y. Fu, M. Ding, and C. Zhou: IEEE Transaction on Systems, Man, and Cybernetics—Part A: Systems and Humans, " vol. 42, no. 2, pp.511-526, Mar. (2012).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3