Grafting of Linear Low Density Polyethylene (LLDPE) onto Tallow via Anhydride: Effect of Residence Time

Author:

Alwi Habsah1,Hanipah Suhaiza Hanim1,Zakaria Mustaqim1,Subuki Istikamah1,Shahrudin Munawar Zaman1,Hadi Abdul1

Affiliation:

1. University Technology Mara (UiTM)

Abstract

Grafting polymerization by reactive small molecules involves the formation of graft copolymers from a reaction between polymers and monomers. Monomer units can be propagated onto the polymer backbone to form a graft structure. In the polymer processing industry, the internal mixer is the most important piece of machinery. The study used the internal mixer as a reactor to make a reactive process with the interest in residence time,as the residence time is importance in the chemical reaction. By increase the residence time, the optimum degree of grafting may be occurred. The objectives of this studyareto increase the knowledge and understanding of the internal mixer process, determine optimum residence time process variables for grafting LLDPE and study the effect of the residence time toward the LLDPE grafting process. Several residence times was choosing for the specified sample, to study the effect of the residence time which were 60 s, 120 s, 180 s, 240 s, 300 s and 600 s. Degree of grafting (DOG) was calculated to determine the grafting of LLDPE grafted copolymers and a series of samples in which degrees of grafting had been determined by chemical titration. Residence time at 300 s produces the optimum DOG of monomer onto polymer. Longer residence time will produce high degree of grafting but will cause other issues such as increasing in gel content and lower the mechanical properties of the grafted polymer.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3