The Preparation Technology of SnO2 Nanowires Based on the System of Al-SnO-Cu2O

Author:

Li Jun Shou1,Wu Xiao Juan1,Wang Ming Yuan1,Zhao Fang1

Affiliation:

1. Mechanical Engineering College

Abstract

Aluminum powder, stannous oxide powder and cuprous oxide powder are used for the preparation of tin oxide nanostructure in combustion synthesis-injection method with the formula designed using combinatorial chemistry method. The composition range of tin oxide nanostructure synthesis has been studied and the best formula of tin oxide nanowires synthesis has been screened. The research shows that the effective ingredient scope of tin oxide nanostructure is Al=30%~60%, CuO2=10%~50%, SnO=20% ~50% (mol), the main form of tin oxide nanostructure is nanowire and there are also forms such as nanorod, nanoparticle and nanobelt. The formula of tin oxide nanowire which leads to high yield, high purity and high conversion is Al:SnO:Cu2O=4:2:4(mol), the diameter of the tin oxide nanowires is within the range of 10~100 nm and most of them is from 40 to 60 nm, the highest conversion rate of SnO powder to SnO2 nanowire is 25.6%(mass), the tin oxide nanostructure synthesized by combustion synthesis-injection method has high purity, good dispensability, low preparation cost and it is also suitable for mass production.

Publisher

Trans Tech Publications, Ltd.

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3