Epitaxial Growth of 4H-SiC with High Growth Rate Using CH3Cl and SiCl4 Chlorinated Growth Precursors

Author:

Kotamraju Siva Prasad1,Krishnan Bharat1,Koshka Yaroslav1

Affiliation:

1. Mississippi State University

Abstract

Thick 4H-SiC epitaxial layers have been grown using a combination of two chlorinated precursors silicon tetrachloride (SiCl4) and chloromethane (CH3Cl) at 16000C. Growth rates up to 100 m/hr have been demonstrated. The use of chloro-silane precursor eliminated the problem of homogenous nucleation of Si in the gas phase, which was significant in CH3Cl/SiH4 growth. Much higher values of Si/H2 and C/H2 ratios without morphology degradation were made possible by increasing the growth temperature from 1300 to 1600°C. Results of photoluminescence and high-resolution X-ray diffraction and time-resolved PL were used to evaluate the quality of the epitaxial layers. The crystalline quality and the growth rate achieved so far offer a promise of exceeding the state of the arts results achieved with more traditional hydro-carbon precursors.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3