Cellular Microstructure and Mechanical Properties of a Directionally Solidified Al-1.0wt%Fe Alloy

Author:

Goulart Pedro R.1,Spinelli J.E.2,Bertelli F.2,Osório Wislei R.R.2,Cheung Noé1,Garcia Amauri3

Affiliation:

1. IFSP

2. Federal University of Rio Grande do Norte

3. University of Campinas – UNICAMP

Abstract

Upward directional transient solidification experiments have been carried out with an Al-1.0wt%Fe alloy. Tensile tests were carried out with samples collected along the casting length and these results have been correlated with measured cell spacings, since cellular growth has prevailed along the directionally solidified casting. The resulting mechanical properties include ultimate tensile strength, yield tensile strength and elongation. The used casting assembly was designed in such a way that the heat was extracted only through the water-cooled system at bottom of the casting. During non-equilibrium solidification, typical of DC (direct chill) castings, different cooling rates occur from the casting cooled surface up to the top of the casting, causing the formation of metastable intermetallic phases (AlmFe, Al6Fe, etc) in addition to the stable Al3Fe phase. The extensive presence of plate-like Al3Fe phase in the as-cast structure adversely influences the mechanical properties of Al-Fe alloys, since this morphology is more likely to induce microcracks than the fibrous Al6Fe phase. In order to permit an appropriate characterization of these intermetallic phases, they were extracted from the aluminum-rich matrix by using a dissolution technique. These phases were then investigated by optical microscopy and SEM techniques. It was found that the ultimate tensile strength, the yield strength and the elongation increase with decreasing cell spacing and experimental laws correlating cell spacing and these mechanical properties have been established.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3