Microstructure Evolution of Pure Nickel up to a High Strain Level during Equal-Channel Angular Pressing

Author:

Liu Fan1,Zhang Yue1,Wang Jing Tao1

Affiliation:

1. Nanjing University of Science and Technology

Abstract

Nickel of 99.5% purity, with an initial grain size of ~23 μm, was subjected to equal-channel angular pressing (ECAP) up to a strain of ~12 at room temperature via route Bc. Mechanical properties and microstructures are investigated by tensile tests, microhardness tests, TEM, and EBSD observations. Results of mechanical properties show that yield strength and tensile strength increase as strain increase up to a max value( s~1009 MPa, b~1120 MPa) at ~8, and microhardness reaches its maximum of ~370HV after 12 passes. Analysis by TEM showed that grain size of pure nickel was severely refined from ~23 μm to several hundreds of nanometers after ECAP processing. Initial coarse grain are divided with lamellar boundaries and dislocation cell structures at low strain level, there has resulted in a homogenous and fine spacing of lamellar boundaries (~100 nm) after 4 passes of ECAP, low angle characters of those boundaries are revealed from corresponding SAED pattern; equiaxed grains of diameter with ~98 nm come out among lamellar boundaries after 12 passes.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3