Effect of Band-Edge Interface Traps and Transition Region Mobility on Transport in 4H-SiC MOSFETs

Author:

Potbhare Siddharth1,Akturk Akin2,Goldsman Neil1,Lelis Aivars J.3,Dhar Sarit4,Agarwal Anant K.5

Affiliation:

1. University of Maryland

2. CoolCAD Electronics LLC

3. U.S. Army Research Laboratory

4. Cree, Incorporation

5. Cree, Inc.

Abstract

We present physics based models for the occupation of interface traps and the mobility of the transition layer found in 4H-SiC MOSFETs and extract values for the same using combined numerical simulation and experimental characterization. The Si-C-O transition layer found in 4H-SiC MOS devices is electrically modeled as having a doping dependent mobility that is different from the regular bulk 4H-SiC bulk mobility. Compared to the high intrinsic bulk mobility of 4H-SiC, the transition layer intrinsic mobility was extracted to be approximately 165cm2/Vs. The occurrence of the excessive high density of interface traps near the conduction band edge led us to develop a new model for the occupation of traps lying inside the conduction band itself. Due to the conduction band trap densities being comparable to the conduction band electron states, a non-zero probability exists for their occupation, which causes the occupied trap densities to be very high in strong inversion. Detailed numerical simulations and corroboration with experiment have been performed to calibrate the models and extract physical parameter values.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3