Affiliation:
1. National Institute of Technology
Abstract
Human hair dumped in the waste streams as a waste material in most of the societies which creates many environmental problems, but it has many exceptional physical, mechanical and microstructural properties. The present investigation aims at developing a class of hybrid composite with improved insulation capabilities consisting of epoxy, short hair fibers (SHF), and solid glass microspheres (SGM). Solid glass microspheres (10 wt. %) filled epoxy based hybrid composites are fabricated with four distinct fiber loading (0, 5, 10, 15, 20 wt. %). Density and effective thermal conductivity of these composites are measured experimentally following appropriate ASTM standards. The measured effective thermal conductivities (Keff) are compared with theoretical values from “Rule of Mixture” model. It is noticed that thermal conductivity of the composite decreases with increase in fiber content. Micro-structural characterization such as scanning electron microscopy (SEM), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) analysis of the composite has been done to know the surface morphology, crystallinity and functional groups present in the composite. It is found that with the incorporation of 20 wt. % hair fiber along with 10 wt. % of SGM the thermal conductivity of the epoxy is reduced by about 27 %.
Publisher
Trans Tech Publications, Ltd.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献