Time Dependence of Muon Spin Relaxation Rate in Aluminum and Al-1.6%Mg2Si Alloy

Author:

Nishimura Katsuhiko1,Matsuda Kenji1,Lee Seung Won1,Watanabe Isao2,Jawad Majed Abdel2,Matsuzaki Teiichiro2

Affiliation:

1. University of Toyama

2. RIKEN

Abstract

Zero-field muon spin relaxation experiments were carried out for Al-1.6%Mg2Si and a pure aluminum in isothermal conditions between 260 and 300 K. Observed relaxation spectra were analyzed to extract the dipole width (D) values which were found to decrease with time after solution heat treatment and quenching. Time variations of D appeared to take place two stages in both samples. The stage transition times (tII) deduced for Al-1.6%Mg2Si were comparable to those for the Si-rich clustering stage reported for Al-Mg-Si alloys. The estimated activation energy of Si-rich clustering was 0.62 (±0.04) eV. The stage transition times (tM) for the pure aluminum were 255, 110 and 82 min after quenching at the measuring temperatures of 260, 280 and 300 K, respectively. An Arrhenius plot of logarithmic tM against reciprocal temperature resulted in an activation energy of 0.19 (±0.06) eV.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3