Machine Learning Approach to Predict Dielectric Permittivity of PE/TiO2 Nanocomposites

Author:

Zazoum Bouchaib1ORCID

Affiliation:

1. Prince Mohammad Bin Fahd University

Abstract

Controlling process parameters has significant influence in designing and developing nanocomposites materials with tailored dielectric properties. In the present study, polyethylene/TiO2 nanocomposites were fabricated using ball milling technique. The effects of TiO2 nanoparticles on the final dielectric properties of the nanocomposites in frequency domain were investigated. The dielectric spectroscopy measurements revealed that relative dielectric permittivity of the nanocompsoites was increased with TiO2 content. Besides, machine learning approach based on artificial neural networks (ANNs) algorithm was used to predict the dielectric permittivity of the nanocomposites materials. Modeling results showed clearly that the predicted data of the proposed artificial model are in good agreement with the experimental values. Moreover, the present study proved that ANNs can be used as successful tool to predict the dielectric properties of nanocomposites materials.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3