Shallow Incorporation of Nitrogen in HPSI 4H-SiC through the Laser Enhanced Diffusion Process

Author:

Sullivan III William W.1,Hettler Cameron1,Dickens James1

Affiliation:

1. Texas Technology University

Abstract

This paper investigates n-type doping of point-defect compensated high purity semi-insulating (HPSI) 4H-SiC using a pulsed laser (10 ns FWHM @ 260 nm) for the introduction of nitrogen to shallow depths. A thermal model is presented using COMSOL Multiphysics featuring nonlinear temperature dependent material properties and a volumetric heat source term that takes into account the laser absorption depth for common ultraviolet irradiating wavelengths. The temperature distribution in the material and the amount of time that the surface and near-surface regions are at high temperature determines how many laser pulses are required to dope to the desired depth, and simulation results are presented and fit to measured data. The simulations and measured data show that for shallow doping a short wavelength ultraviolet laser should be used to localize the heat at the surface so the dopant can’t diffuse deep into the material. The laser enhanced diffusion process has been used to incorporate nitrogen into HPSI 4H-SiC with a measured surface concentration greater than 1020 cm-3 and a nonlinear thermal model was built.

Publisher

Trans Tech Publications, Ltd.

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High Power Lateral Silicon Carbide Photoconductive Semiconductor Switches and Investigation of Degradation Mechanisms;IEEE Transactions on Plasma Science;2015-06

2. Plasma Etching of n-Type 4H-SiC for Photoconductive Semiconductor Switch Applications;Journal of Electronic Materials;2015-02-13

3. Effect of BCl3in chlorine-based plasma on etching 4H-SiC for photoconductive semiconductor switch applications;Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena;2014-09

4. All solid-state high power microwave source with high repetition frequency;Review of Scientific Instruments;2013-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3