In-Plane Rotated Crystal Structure in Continuous Growth of Bismuth Cuprate Superconducting Film

Author:

Kaneko Satoru1,Akiyama Kensuke1,Ito Takeshi1,Hirabayashi Yasuo1,Funakubo Hiroshi2,Yoshimoto Mamoru2

Affiliation:

1. Kanagawa Prefectrual Industrial Technology Center

2. Tokyo Institute of Technology

Abstract

Bismuth cuprate superconductor has a unique structure called a structural modulation (supercell, SC) consisting of modulated several unit cells. Strain induced by multilayered structure increases the intensity of SC modulation, while an oxygen deficient sample shows expansion of SC size. In this study, as opposed to the multilayer strain, by preparing samples with thick film thicknesses the effect of strain on crystal structure was investigated including SC structure. Epitaxial growth was verified by x-ray diffraction, and the thicker film showed other epitaxial phase rotated 32° around the surface normal with respect to the initial epitaxial phase. The SC size estimated by x-ray reciprocal space mapping was double the size of the initial epitaxial phase. Interestingly, the initial epitaxial phase became a dominant structure after further deposition. In order to evaluate the different SC size and SC modulation, a new index related with an incline of the modulation vector was proposed.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3