Phase Stability in Nanocrystalline Zirconia

Author:

Baldinozzi Gianguido1,Simeone David,Gosset Dominique2,Dutheil Michael

Affiliation:

1. CNRS Ecole Centrale Paris SPMS MFE

2. CEA Saclay

Abstract

Zirconia can be considered to be one of the most important ceramic materials because of its large range of industrial applications (catalysis, coatings, spacecraft shielding, paint additives, oxygen sensors, fuel cells, nuclear fuel matrices, an alternative high permittivity material to replace silicon oxide as a gate dielectric in MOS devices). Many of these applications require the use of zirconia in a nanocrystalline form. It is now well established that a monoclinc to tetragonal phase transition is trigged by the grain size of zirconia. The mechanism of this phase transition in zirconia is not yet clearly understood. Several experiments point out that the thermodynamic properties of nanocrystalline solids are particle-size dependent. Size-related effects like the reduction of the melting temperature and displacement of the phase boundaries can be predicted. Zirconia can be considered a textbook example for describing these effects. In this ceramic several polymorphic transformations occur with the change of external parameters (Temperature, pressure, …). In this paper, the behaviour of the tetragonal to monoclinic martensitic phase transition within Landau theory framework in particular will be discussed, pointing out the peculiar effects related the small grain size of the nanoparticles. Neutron diffraction experiments will illustrate the of these arguments and provide some insight to the understanding of the behaviour of nanocrystals in severe environments, such as in nuclear reactors or in space applications.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3