Affiliation:
1. Poznan University of Technology
Abstract
The formation mechanism of the Ca–P coating on the porous nanocrystalline Ti-6Al-4V alloy is presented. The Ca–P compounds were cathodically deposited at different potential (from –0.5 to –10 V vs. open circuit potential), using a solution mixture of Ca (NO3)2+ (NH4)2HPO4+ HCl. Depending of the deposition potential, the atomic ratio of Ca/P in deposits is in the range from 0.25 to 1.71, which indicates that the coating composition corresponds in some cases to hydroxyapatite. The Ca–P particles penetrate preferentially the pores inside, which improve bonding of the bioceramic layer to the metallic substrate. Increasing the cathodic deposition potential results in changes of the Ca–P morphology from thin porous, through cracked up to thick 90 μm continous coating. The porosity of the Ca–P decreases with increasing cathodic deposition potential. It is proposed the electric field enhancement mechanism of the electrolytic ions flow and Ca–P growth on the surface irregularities, such as pores and surrounding hillocks.
Publisher
Trans Tech Publications, Ltd.
Subject
Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献