Peculiarities of Dislocation Related D1/D2 Bands Behavior under Copper Contamination in Silicon

Author:

Tereshchenko A.N.1,Steinman E.A.1

Affiliation:

1. Russian Academy of Sciences

Abstract

In this paper we present a detailed investigation of peculiarities of dislocation related D1/D2 bands behavior in silicon doped with Cu. For this purpose float zone grown (FZ) p-type silicon with B-doping 2.85·1015cm-3 was deformed by 3-point bending method at 950flC up to dislocation density of 2±0.2·106 cm-2. The deformed samples were contaminated with Cu up to several concentrations from 6·1013 cm-3 to 5·1016 cm-3. The variation in dislocation related spectra were traced after different thermal treatments. A decrease of D1/D2 bands intensity in quenched samples was observed even after their storage at room temperature. Taking into account the fact that Cu has a high mobility even at room temperature the decrease of D1/D2 bands intensity can be attributed to passivation of corresponding luminescence centers by Cu atoms. The influence of Cu contamination on D2 band is much more complicated as compared to D1 band. New line in position about 883 meV was observed as a result of storage of samples at room temperature and subsequent isochronous anneals. It was observed that D1/D2 band luminescence sharply increased in 30K – 50K range in samples with high Cu doping level. In addition the line in about 830 meV position became stronger at these temperatures whereas its intensity was negligible at 6K.

Publisher

Trans Tech Publications, Ltd.

Subject

Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3