Neural Network Analysis of the Magnetic Bearing Systems

Author:

Fu Hong Ya1,Liu Ping Fan1,Zhang Qing Chun1,Li Guo Dong2

Affiliation:

1. Harbin Institute of Technology

2. RIGOL

Abstract

In order to overcome the system nonlinear instability and uncertainty inherent in magnetic bearing systems, two PID neural network controllers (BP-based and GA-based) are designed and trained to emulate the operation of a complete system. Through the theoretical deduction and simulation results, the principles for the parameters choice of two neural network controllers are given. The feasibility of using the neural network to control nonlinear magnetic bearing systems with un-known dynamics is demonstrated. The robust performance and reinforcement learning capability in controlling magnetic bearing systems are compared between two PID neural network controllers.

Publisher

Trans Tech Publications, Ltd.

Reference9 articles.

1. SCHWEITZER G, BLEULER H, TRAXLER A. Active magnetic bearings basics, properties and application of active magnetic bearings[M]. ETH, Switzerland:Hochschulverlag AG, (1994).

2. HAWKINS L A, MURPHY B T, KAJS J. Analysis and testing of a magnetic bearing energy storage flywheel with gain-scheduled MIMO control[C]/ Proceeding of ASME Turbo Expo, Munich, Germany:IGTI, 2000, 5:1-8.

3. SU Yixin, LONG Xiang, ZHANG Danhong, et al. Neural network adaptive PID control of active magnetic bearings[J]. Journal of Central China Normal University (Nat. Sci. ), 2004, 38(3): 304-307. (in Chinese).

4. A. Escalante. V. Guzman. M. Parada et al. Neural network emulation of a magnetically suspended rotor. Transactions of the ASME: Journal of Engineering for Gas Turbines and Power, 2004, 126: 373~384.

5. J. W. Kim, D. J. Xuan, Y. B. Kim. Control of a magnetic flywheel by a fuzzy neural network algorithm. ICMIT 2005: Control Systems and Robotics, Proc. of SPIE 2005, 6042: 29~45.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3